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THE DECAY OF AN ARBITRARY INITIAL DISCONTINUITY IN AN ELASTIC MEDIUM* 

A.G. KULIKOVSKII and E.I. SVESHNIKOVA 

The solution of the problem of the decay of an arbitrary discontinuity in 
elastic theory is studied. It is assumed that a plane boundary separates 
an elastic homogeneous, non-heat-conducting medium into two half-spaces 
with different elastic properties and densities. Each of the media 
possesses an arbitrary kind of homogneous initial strain (stress) and 

velocity. In the sequel the stresses and velocities of the media are 
assumed to be continuous at the boundary. This results in the formation 
of a system of plane selfsimilar waves (simple and shock), which propagate 
in each of the half-spaces. The problem is solved under the assumption 
of weak non-linearity and anisotropy of the materials. This permits an 
approximate evaluatron of the stress and strain at the contact disconti- 

nuity. After this the problem on the decay of an arbitrary initial dis- 

continuity is reduced to two problems on the sudden change of load on a 

half-space boundary, which are solved independently for each of the media. 

1. Fundamental equations. We assume the plane s -7 0 in the Lagrange variables 

Xl? x2.13- X to separate two media. In the unstressed state, the axes xi form a rectangular 

Cartesian system in each of the media, where the axes 51, x2 in the plane of the boundary 

can be oriented differently in the media to the right and left of the interfacial boundary. 

We denote the medium on the right of the boundary (,r> 0) by A and the medium on the left 

(~(0) by B. Each of the media possess its homogeneous initial strain .1, li 
eU = const and 

initial velocity l'?" = const. The problem is selfsimilar. 

We assign its internal energy U or elastic potential @ = p& to each of the elastic 

media. Let (DA = p,,"UA (awi:arj, g, S). for the medium ,4 (z> 0) while a"= p,'jU" (&~~/&j, g, s) 

for the medium B (x < 0). Here p0 is the density of the medium in the unstressed state, ,L'i 

are the components of the displacement vector, S is the entropy per unit mass, and g is a 

parameter characterizing the anisotropy of the media, more truly, giving definite symmetry 

properties that the material possesses. The parameters g can generally be scalars, vectors, 

or tensors. 
We consider them to be constants that do not change during the passage of the strain 

wave. 

Only the awiiax of the strain gradient components aw,iaxj vary in plane waves, for 

which it is convenient to introduce the notation awi/dx = ui (z, t) (i = 1, 2, 3). All the rest 

i)Wi'&, (a = 1, 2) remain constants, where we set dw,/8x, = 0, so that the wave fronts are 

shifted parallel to the initial location of the interfacial boundary. The rest dw,/& := const 

can be produced by deformation anisotropy of the medium. 
One-dimensional adiabatic motions (plane waves) in each of the media A and B on different 

sides of the boundary X=0 are described by the non-linear system of equations /l, 2/ 

(1.1) 

aui aui 
dl=dt , +-~0, i=1,2,3 

Here uI = aw,!at are velocity vector components, and Uis are the Piola-Kirchhoff stress 

tensor components. 
We consider that slip does not occur on the interfacial boundary of the two media, it is 

a contact discontinuity on which the velocity and stress vectors are continuous. It is con- 

venient to write the boundary conditions separately for the normal and tangential components 

of the designated vectors. The subscript r means that the vector in question lies in a 

plane parallel to the wave front 
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The initial states of the media A and B (for t = 0) are given by the strain components 

ni (t = 0) = U:*", (~~~/~x~)~,* (i = 1, 2, 3; a, fi = 1, 2) of the velocity ~3 (t = 0)= Vi'*" and the 

entropy S"s". Moreover, the media are characterized by constant anisotropy parameters g"sn. 

2. &I approximate approach. we will consider both elastic media to possess weak 
non-linearity so that the solution can be obtained by expansion in a small parameter E [the 
characteristic magnitude of the strain). Both media can have weak anisotropy, naturalordue 
to strain. Wetakeitscharacteristic magnitude as 6. The presence of a small non-linearity and 
anisotropy transforms the longitudinal and transverse waves into quasilongitudinal and quasi- 
transverse. Both the non-linearity and the anisotropy will be taken into account in just the 
principal terms disclosing the deviation of the solution from a linear isotropic one. An 
investigation of simple and shack waves in such an approximate formulation /2-6/ showed that 
the quasilongitudinal and quasitransverse waves can be studied independently, where it is 
sufficient to represent the elastic potential of the medium by an expansion in the strain 
components to terms of order E 3 for the quasilongitudinal waves and to terms of order er for 
the quasitransverse waves in order to clarify the principal non-linear effects. 

Only quasitransverse waves will be considered as the most interesting and complex result- 
ing in new effects (as compared with gas dynamics). Non-linear effects not taken into account 
in the expansion of cf, for them, differ from those written down by not less than Ed. We also 
take the anisotropy into account by its principal terms, the lowest in the expansion in 6, 
namely, linear in S. As is shown in /6/, the expansion of the potential Q forquasitransverse 
waves in a specially selected coordinate system u,,up is in even powers of Us, i.e., has the 
form 16, J/ 

4,= 1*‘2 (f - g) u: + ‘I, (f + g) u22 - x (UC + hY2 i- (3.1) 
PoT, (S - So) 

f = p + 0 (e) = &C” 

for a broad class of anisotropic media (including transversally isotropic and orthotropic). 
Here c is the characteristic velocity of linear isotropic transverse waves, p is the Lame 
coefficient of an elastic medium, 1~ is still another elastic modulus of the medium that 
introduces non-linear effects, and the constant g- 6 describes the anisotropy. The relative 
error of the expansion taken does not exceed the small quantity x= max {~~,8}, i.e., terms 
not taken into account differ from those written by not less than the quantity X. 

We note that because of the fact that the form (2.1) for writing the potential tP in each 
of the media is obtained in specially selected coordinate axes u,, uz, these axes can be 
oriented differently in the media A and B and can have a different origin. 

To eliminate a quasilongitudinal wave from consideration, we consider the initial values 
of the normal stress and velocity components to the boundary identical to accuracy X in 
both media. This enables us (to the same relative accuracy x) to consider the group of 
boundary conditions (1.3) as satisfied. 

3. Determination of the state on the contact discontinuity. we reduce the 
problem of decay of the initial discontinuity to a selfsimilar problem on the sudden change 
of the stresses on the half-space boundary. To do this, values of the strain Urr (cf = 1, 2) 
must be determined on the contact boundary for t> 0. Because of selfsimilarity these will 
be constant quantities u E which will differ forthemedia A and B in the general case. 

As is shown in /7/, for waves propagating to one side, the velocity and strain components 
in a wave can be connected by the same relationships as in a linear isotropicwave (the relative 
error heredoesnot exceed the quantity x) 

v, - I/aA = -es (un - U,A)+ O(ex) for waves going to the right 

v.7. - V8 B = c"(ua - lJaa) +0(8x) for waves going to the left 

f3.!) 

Using (2.1) and (3.1), we write down only the principal terms explicitly for quasi- 
transverse waves under conditions on the contact surface of the media (x = 0) 

- CA (a:‘+ *n - f&“) + v,” = cn (u, - UzB) + vxB -+- 0 &T). 
p.4”~” = j.Plly + 0 (q) 

(3.2) 
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The values u:."" found from this system on the contact plane will be determined to the 
accuracy of x. But, as mentioned above, the simple and shock waves /2-S/ were investigated 
to precisely such accuracy and we shall use it to construct the solution of the problem of 

the decay of a discontinuity. There is a solution of the selfsimilar problem on a sudden 
change in the load on a half-space boundary /8, 9/ with the same relative error X ,where 
domains of values of ua* are indicated to the same accuracy x on the boundary, whichresults 
in different forms of the solution. Consequently, a linear approximation in writing the con- 
ditions on the boundary and their resolution is sufficient for a qualitative investigation 

of the problem of the decay of a discontinuity. 

Thus, solving (3.2) for LL~*, we obtain 

When the medium on both sides of the plane 2 == 0 is identical, i.e., p. and I_L are 
identical, but the difference is just in the initial strains U$" and the velocities J:$* I( 

the vectors u,* on the boundary are continuous and in place of (3.3) we have a simple ex- 
pression for them 

*A *B 
II, ==“, = U” + ‘/2AV/c, U’ _I l/s (U;’ +- U,“) (3.4) 

4. The problem for a half-space. NO=, for each of the half-spaces to the right 
and left of z = 0 we have the following selfsimilar problem: for t = O,z> 0 and .I' < 0 

each medium possesses its own strain O_;il", at the time t=o the strains on the boundary 
bA,II 

I = 0 take the value ua and remain such later. The problems are solved independently 
for each of the half-spaces. The solution of such a problem, to the accuracy assumed here, 
is worked out in /8, 9/. Systems of selfsimilar simple and shock waves proceed on both sides 
of the boundary. Their configurations in terms of LL,* depend on the initial velocity v, 

and strain C, of the media. For fixed U,", U,J; the boundary values LI?* depend linearly on 
the vector of the relative velocity Av. For each point of the plane AL',, AV, a *A, 14 el- can 

be found, and therefore, by using /8, 9/ those wave systems can be indicated that propagate 

on both sides of the boundary. 

5. The problem of the decay of a discontinuity in an isotropic medium. AS 

an example, we consider the simplest case of a problem when a medium is identical on both 
sides and without anisotropy (n-4 =- g'l = U). Then part of the shock adiabat of the quasi- 

transverse shockwaves (circle) coincides with one of the integral curves of the simple waves. 

These waves propagate with a change in shape and entropy. By analogy with magnetohydrodynamics, 

we call them a rotational discontinuity. In media where the coefficient x in (2.1) is 

positive, the rotational discontinuity is a fast wave /2-5/ and it proceeds in front of other 

wavesonbothsidesoftheboundary x = 0.1nmediawith X< 0 therotationaldiscontinuity is aslow 

wave, the trailingwave in the sequence.Tobe specific let x)0.: Which wave follows behind the 
rotational discontinuity depends on what domain of the plane un the point I&* imaginq the 

state on the contact discontinuity would be incident on. 

The initial states L:,;' and Ua" are marked by the points A and 3 in Fig.1. For AV =: 
0 the boundary vaiues un* yield the point ,%I" (ui‘) according to (3.4). Other magnitudes of 

the relative velocity difference AI/#0 can yield another point of the plane ua as the 

state un* on the contact boundary. Two concentric circles passing though the initial points 

A (u,*) and u(u,s) (Fig.la) divide the plane uG into three domains. The incidence of Ua* 

into any domain will result in different kinds of solution of the problem of discontinuity 

decay. 
For fixed UzA,UTU the values uT* depend on i\v. Let us display the ends of the vectors 

AV by points of the plane AV,lc (Fig.lb) and let us divide the whole plane Al/,/c into a 

domain such that their points yield the value Un * in the domains indicated in Fig.la. Because 

of the linearity of the dependence of &* on bV the appropriate domains in the plane Av,lC 

are also formed by concentric circles with centre at the point O,(-Uao) and passing through 

the points 4 (ua.a - cTGfr) and B(u,* - c',"). When the point ua* lies within an annular 

domain a rotational discontinuity first propagates to the right in the state A and a slow 

shock behind it. The rotational discontinuity is to the left (in the state B) and a slow 

simple wave behind it (Fig.2a). Behind the rotational discontinuity for the state cla* slow 

simple waves proceed outside the large circle on both sides, and slow shocks for the state 

WY&* within the smaller circle. 
The wave systems that can be obtained during decay of the initial discontinuity in an 

incompressible isotr0pj.c elastic medium under definite conditions on the kind of elastic 

potential are also indicated in /lo/. 
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6. Influence of anisotropy of the medium on the solution. When the medium 
possesses the anisotropy (gA=ga= g+ 0) on both sides of the interfacial boundary, the 
geometry of the domains consisting of the boundary values ua*' resulting in different kinds 
of solutions becomes more complex. These domains and their corresponding solutions of the 
problem on waves proceeding from the boundary are displayed in /8/ for media with x>O and 
in /9/ for x(0. For instance, for the state ucr* shown in Fig.1 by the point M, when there 
is no anisotropy we have the solution shown in Fig.Zb, and for g#O the solutionisdisplayed 

in Fig.3. 

Fig.1 

a 

b 

Fig.2 

Fig. 3 Fig.4 

If @#P, then for continuity on the boundary of the vector UT" = u:~ because of the 
different orientation of the axes hA and uGB (Fig,la) the magnitude of the components of 
this vector for the domain A and the domain B are different, which also induces a contribution 
to the difference in the kind of solution (Fig.4b). 

7. The problem of the collision of shocks. On the basis of the solution obtained 
the problem of the reflection and refraction of waves at the interfacial boundary of two media, 
on the collision of shocks, etc., can be investigated. For instance, two shocks proceed, one 
towards the other, in a medium at rest that possesses the initial deformation lT&. Ena. Let 
the intensities of these waves be such that the deformed state acquires a component l:,-a behind 
the wave front going from right to left (in the negative direction of the x axis) while the 
strain components proceeding oppositely behind the front have the magnitude Chs. When these 
twowavescollide new magnitudes for the strain components ua* = GaA + U,a - U," should be 
obtained on the collision boundary. 

Since UCIA, UaH are arbitrary, the state &* on the boundary can be imagined as any 
point in the plane a,. Furthermore, as before, two problems should be solved 'for the half- 
spaces in which the initial deformed state is given by the quantities r;,"8", while on the 
boundary it suddenly changes to u** and is later retained. The form of the solution is 
obtained, for instance, just as in one of the Figs.2 and 3. 

It is necessary to recall here that according to /l, 3, 5/ shocks when there is noinitial 
deformation u,' can exist only in media with x < 0, for Cl=" # 0 in others. 



Note that the solution of all the problems elucidated is based on the solution of the 
selfsimilar problem regarding a sudden change in the deformation on the boundary of an elastic 
half-space. It was found in the solution of this problem /8, 9/ that for certain relationships 
between the anisotropy and the initial deformations, a domain of values ur**. although small, 
can appear for which the solution is not unique. For these values of (Lo* additional inves- 
tigations are necessary. Such an investigation is performed in /ll/ and enables one to say 
to which of the two possible solutions preference should be given. 
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CONSTRUCTION OF DISCONTINUOUS SOLUTIONS OF THE EQUATIONS 
OF PLANE ELASTICITY THEORY BY THE METHOD OF GENERALIZED FUNCTIONS* 

A.S. KOPETS 

A method of constructing integral representations ofdiscontinuous solutions 

of the equations of plane elasticity theory based on the use of the 

apparatus of the theory of generalized functions is described. The 

representations obtained for the discontinuous displacement and stress 
field components are utilized to formulate sufficient conditions ensuring 

continuous continuation of these quantities at almost all the points of 
the line of discontinuity. 

1. Formulation of the problem. We consider the complete system of equations of 

plane elasticity theory describing the stateof plane strain of a cylindrical body when there 

are no mass forces and initial stresses /l/ in a system of rectangular Cartesian coordinates 
-.__- 
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